Simultaneous reduction in cancer pain, bone destruction, and tumor growth by selective inhibition of cyclooxygenase-2.

نویسندگان

  • Mary Ann C Sabino
  • Joseph R Ghilardi
  • Joost L M Jongen
  • Cathy P Keyser
  • Nancy M Luger
  • David B Mach
  • Christopher M Peters
  • Scott D Rogers
  • Matthew J Schwei
  • Carmen de Felipe
  • Patrick W Mantyh
چکیده

More than half of all chronic cancer pain arises from metastases to bone, and bone cancer pain is one of the most difficult of all persistent pain states to fully control. Several tumor types including sarcomas and breast, prostate, and lung carcinomas grow in or preferentially metastasize to the skeleton where they proliferate, and induce significant bone remodeling, bone destruction, and cancer pain. Many of these tumors express the isoenzyme cycloxygenase-2 (COX-2), which is involved in the synthesis of prostaglandins. To begin to define the role COX-2 plays in driving bone cancer pain, we used an in vivo model where murine osteolytic 2472 sarcoma cells were injected and confined to the intramedullary space of the femur in male C3HHeJ mice. After tumor implantation, mice develop ongoing and movement-evoked bone cancer pain-related behaviors, extensive tumor-induced bone resorption, infiltration of the marrow space by tumor cells, and stereotypic neurochemical alterations in the spinal cord reflective of a persistent pain state. Thus, after injection of tumor cells, bone destruction is first evident at day 6, and pain-related behaviors are maximal at day 14. A selective COX-2 inhibitor was administered either acutely [NS398; 100 mg/kg, i.p.] on day 14 or chronically in chow [MF. tricyclic; 0.015%, p.o.] from day 6 to day 14 after tumor implantation. Acute administration of a selective COX-2 inhibitor attenuated both ongoing and movement-evoked bone cancer pain, whereas chronic inhibition of COX-2 significantly reduced ongoing and movement-evoked pain behaviors, and reduced tumor burden, osteoclastogenesis, and bone destruction by >50%. The present results suggest that chronic administration of a COX-2 inhibitor blocks prostaglandin synthesis at multiple sites, and may have significant clinical utility in the management of bone cancer and bone cancer pain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical analysis of tumor growth regression by the cyclooxygenase-2 inhibitor, DFU, in a Walker256 rat tumor model: importance of monocyte chemoattractant protein-1 modulation.

Cyclooxygenase (COX)-2 inhibition results in tumor regression; however, little is known about the mechanism. In the present study, using a Walker256 tumor model and a rat bone marrow-derived endothelial cell line TR-BME-2, we analyzed the effects of a new selective COX-2 inhibitor, 5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl)phenyl-2-(5H)-furanone (DFU), on the production of chemokines...

متن کامل

Antitumor activity of ZD6474, a vascular endothelial growth factor-2 and epidermal growth factor receptor small molecule tyrosine kinase inhibitor, in combination with SC-236, a cyclooxygenase-2 inhibitor.

PURPOSE The epidermal growth factor receptor (EGFR) autocrine pathway plays an important role in cancer cell growth. Vascular endothelial growth factor (VEGF) is a key regulator of tumor-induced endothelial cell proliferation and vascular permeability. Enhanced cyclooxygenase-2 (COX-2) expression has been linked to cancer cell proliferation, EGFR activation, VEGF secretion, and tumor-induced an...

متن کامل

ANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO

The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...

متن کامل

Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2.

A considerable amount of evidence collected from several different experimental systems indicates that cyclooxygenase-2 (COX-2) may play a role in colorectal tumorigenesis. Large epidemiologic studies have shown a 40-50% reduction in mortality from colorectal cancer in persons taking aspirin or other nonsteroidal antiinflammatory drugs on a regular basis. One property shared by all of these dru...

متن کامل

Targeting cyclooxygenase-2 and the epidermal growth factor receptor for the prevention and treatment of intestinal cancer.

Clinical and animal studies indicate a role for cyclooxygenase-2 (COX-2) and the epidermal growth factor receptor (EGFR) in the development and progression of intestinal polyps and cancers. Although this combination of enzyme inhibition has shown synergy in intestinal polyp and tumor models, the exact mechanism for these effects remains undefined. Therefore, we sought to define the molecular me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 62 24  شماره 

صفحات  -

تاریخ انتشار 2002